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Supersymmetric quantum mechanical models with continuous 
spectrum and the Witten index 
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Silver Street, Cambridge CB3 9EW, UK 

Received 22 March 1985 

Abstract. We discuss supersymmetric regularisations of soluble supersymmetric quantum 
mechanical models with continuous parts to the energy spectra. Results include a 
demofistration that the Witten index changes discontinuously from zero to one upon 
removai of the iegu!arisation. 

1. Introduction 

The study of supersymmetric quantum mechanics was initiated and developed exten- 
sively by Witten (1981, 1982) as a vital element in the understanding of the properties 
of supersymmetric field theories in two, and four dimensions. Since then the study has 
developed extensively along a variety of lines. One line (Salomonson and van Molten 
1982, Kihlberg et al 1984, Cecotti and Girardello 1982, Girardello et a1 1983, Niemi 
and Wijewardhana 1984) concerns the study of the Witten index as an indicator of 
supersymmetry breaking in field theory. Another line explores the relationship to 
stochastic quantisation (Cooper and Freedman 1983) and to the closely related matter 
of the Nicolai mapping (Cecotti and Girardello 1982, Damgaard and Tsokos 1984). 
There is also the study, motivated from supergravity theory, of the supersymmetric 
quantum mechanics of (+ models of both compact (Witten 1981, Davis et a1 1983b, 
1984a, b) and non-compact type (Davis et al 1983b, 1984a). One aspect of supersym- 
metric quantum mechanical models that is of interest is that they are often soluble, 
which makes them useful as a testing ground for ideas relevant to higher dimensional 
theories. Further, they may be of direct relevance to the analysis of problems in solid 
state physics, including spin systems (Khare and Maharana 1984). 

In this paper, we introduce a new family of soluble supersymmetric quantum 
mechanical models. They are periodic in space, being defined on the circle C,  of 
circumference 2K. They are analogues of completely integrable theories on the real 
line with reflectionless potentials, theories which actually arise from our models in the 
infinite K limit. Indeed the interrelationships between supersymmetric quantum 
mechanics and integrable systems is developed in our work below. 

A further reason for studying the models can be described as follows. Our models 
illustrate the effects on the structure of a theory of a regularisation procedure that is 
widely employed in field theory, in which a spatial cutoff is used to make the spectra 
of operators of the theory discrete. We highlight the effects of the regularisation 
procedure by calculating the Witten index of our models. We would stress that in our 
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work supersymmetry is maintained throughout all stages of the regularisation pro- 
cedure. In our regularised theories on CK, we find that there exist two discrete ground 
states of energy E = 0, which are each invariant under the supersymmetry generators, 
but one of them is bosonic and one fermionic so that A = 0. Secondly, and as explained 
below, A = 0 for all finite K ,  but A = 1 when K passes to its limiting value of 00 upon 
removal of the regularisation of the original theory with the continuous spectrum. 

This discontinuous change can be understood from various perspectives. In what 
is perhaps the simplest, the asymptotic behaviour of the potential changes discon- 
tinuously from periodic to non-periodic, and so the Witten index can also change 
discontinuously. In the conclusion we mention how this may be viewed in terms of 
the index theorem. 

Since this work was completed several papers have appeared describing the Witten 
index for theories with continuous spectra. Imbimbo and Mukhi (1984a, b) utilise the 
aforementioned connection with the index theorem. They calculate A B  = 
Str exp(-PH), where Str is an appropriately defined graded trace. While the removal 
of the p cutoff in Euclidean time yields a continuous function of p, their analysis 
depends crucially on the assumption that the Hamiltonian is a Fredholm operator 
which restricts the class of models severely. Another approach to calculating the Witten 
index is via the study of the Nicolai map (1980) which can be exhibited for these 
quantum mechanical models (and indeed the d = 2, N = 2 supersymmetric field theory 
(Cecotti and Girardello 1982)). Cecotti and Girardello (1984) utilise this approach. 
It should be noted that because we have an explicit superpotential for the models on 
the circle CK, this may be viewed as giving the Nicolai map in the usual way, and the 
discontinuity we find is the discontinuity in this map. This is just the discontinuity 
mentioned above in changing from a periodic potential to a non-periodic one. 

2. Models defined on the real line 

Starting from a superspace action with a superpotential W, we build quantum 
mechanical models with supersymmetry in the standard way. (See in addition to Witten 
(1981, 1982) and Salomonson and van Holten (1982) also Lancaster (1984).) They 
are specified by 

[ x , p I = i  { A  Go = 1 

Q = ( p + i W ‘ ) $  

Q’ = ( p  - i w’)++ 
H ={Q,  Q ’ } = f ( p * +  W’)’-tW”{$, I,//’} 

Here the primes refer to derivatives of W(x) with respect to x. We use the standard 
representation in which (A) and ( y )  correspond to zero- and one-fermion states so that 

and 
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Aiming to study the Witten index for such theories when the spectrum of H has a 
continuous portion, we consider theories involving the Poschl-Teller or Eckart equation 
(Poschl and Teller 1983, Eckart 1930, Alhassid et al 1983). Thus, we might use 

L = 1,2,3 . . W ' = L t a n h x  

but setting L = 1 (and remarking later on higher L )  simplifies the presentation at little 
cost. The bosonic and fermionic sector Schrodinger equations for (1) become 

(--$+ 1) i,!q=2E1,!1,. (3) 

Equation ( 2 )  has a spectrum with one bound state E = O  corresponding to the nor- 
malised wavefunction &, = sech x l J 2  and a continuous spectrum 2 E  = 1 + q2 for each 
real q, ---CO < q < a, corresponding to wavefunctions 

(Lbq(X)aexp(iqx)(tanh x+iq) .  

Equation (3) is a free-particle Schrodinger equation with solutions 

+f,(X) a exp(iqx) 

defined for each real q and energy given by 2 E  = 1 + q2. It is clear that the continuum 
boson and fermion wavefunctions are in one-to-one correspondence with respect to 
supersymmetry for 

Accordingly the Witten index is clearly given by 

A = l  

due to the unpaired E = 0 bosonic state. We remark that for L = 2 (and similarly for 
higher L )  the bosonic and fermionic sector Hamiltonians involve potentials 

4-6 sech'x 

3 + (1 - 2 sech' x). 

The former, the L = 2 Poschl-Teller or Eckart potential, gives rise to the spectrum 
of 2 E  

0 , 3 , 4 +  q2 

whereas the latter involves the L =  1 potential, whose spectrum 0, l +  q2 was used 
above, shifted by 3, to give 2 E  = 3 , 4 +  9'. The pairing of all the states but the E = 0 
bosonic states is thus assured and A = 1 for L = 2 ,  and, indeed, all L. 

Some of the above work can be seen from a different and instructive perspective 
by reference to the standard techniques of the theory of integrable systems. Setting 

d 
dx 

A = - - + W '  
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we can write the Hamiltonian H of equation ( 6 )  as 

Factorisation of an operator into the form A'A is closely connected with Backlund 
transformations, which are transformations which transform into each other solutions 
of two differential equations. If yn is an eigenvector of A'A belonging to the eigenvalue 
A,,, then it is simple to show that Yn = Ay,, is an eigenvector of AA' belonging to the 
same eigenvalue A,,. In fact A' is said to generate a Backlund transformation. Thus 
our supersymmetry transformation is none other than a Backlund transformation. 
Further, if AA'f = 0, then we have 

(4) 
d2 

dx 
A'A=AAt-2,1nJ: 

This gives, for the case f = exp( - W )  = sechL x at hand, 

Clearly the bosonic sector has one more bound state than the fermionic sector. Again, 
if AA'f =0,  then it follows that AAtf-'=O. In other words, i.e. in the language of 
supersymmetric quantum mechanics, corresponding to the bosonic solution w)), 
there is a fermionic solution Whether or not both such enter the discussion 
of the quantum theory depends upon their normalisability. 

A final point is that we note that solutions of the Poschl-Teller or Eckart equation 
for arbitrary L can be constructed from the L = 0 solutions by repeated supersymmetry 
or Backlund transformations. 

3. Models defined on the circle C, 

Since calculation of the Witten index seems to be problem-free in the case of theories 
with only a discrete spectrum, we wish to consider a regularisation of the above models. 
For this purpose we pass from the models defined on the real line -a < x <CO to 
related theories defined on a circle C,  of circumference 2 K ,  which are supersymmetric 
for all K and which reproduce the models of 0 2 in the limit K + 30. The theories in 
question involve bosonic potentials: 

( W ' ) 2 -  W ' =  L ( L +  l ) k 2  sn2(x, k )  - aL ( 5 )  

where sn(x, k )  is a Jacobian elliptic function, of modulus k and (real) period 2K, 
K = K ( k ) ,  and aL is a constant depending on L. Such information on Jacobian elliptic 
functions as is required in the following can readily be found by reference to a standard 
textbook, e.g. Whittaker and Watson (1978). 

Our choice (5 )  of potential corresponds to a Schrodinger equation of a well known 
type, namely LamC's equation (Whittaker and Watson 1978, Eastham 1973). In fact 
the superpotential W for ( 5 )  is constructed from the lowest energy Lam6 polynomial. 
We note that such Schrodinger equations have been studied before (Alhassid er a1 
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1983, Braden 1984) but not in the context of supersymmetry. Although the case of 
general L can be treated, we consider only the case L= 1 for ease of presentation. 

With L = 1, W is given by 

W = In dn(x, K )  

so that the general supersymmetric result (1) yields the bosonic and fermionic sector 
Hamiltonians: 

d2 
dx 

2 H b = - 7 - k 2 ( 1 - 2 s n 2 ( x ,  k ) )  

d2 
dx2 

2Hf = -- - k2( 1 - 2sn2(x + K ,  k ) ) .  (7) 

We remark that (6) follows (1) directly, whereas (7) requires either manipulations 
based on 

dn(x + K ,  k )  = (1 - k2)1’2(dn(x, k ) ) - ’  

or else via (4) with f =  dn x. The supersymmetric juxtaposition of (6) and (7)  is in 
any case remarkable. We note firstly that as K + cc (and hence k + l), 

sn(x, k )  + tanh x 

sn(x + K ,  k )  + 1 

so (6) and ( 7 )  yield (2) and (3 ) .  Since the shift in x + x + K  by half a period 2K 
converts (6) into (7), it is clear that their spectra, in each case discrete, and solutions 
are in one-to-one correspondence. Also it follows that A = O  for all K .  So how can 
be have A = 1 for the limiting case of K + CO, studied above? To answer this question 
consider the solutions of the Schrodinger equations (6) and (7)  for E = O .  They are 

+Ibadn(x, k )  

+ f a  (dn(x, k))-I 

which is consistent with remarks made at the end of 0 2. Each wavefunction is 
normalisable for all finite K ,  as is easily verified. Now, as K +CO, 

dn(x, k )  + sech x 

and +b corresponds to the normalisable E = 0 bosonic solution found above. Further, 
the fermionic case gives rise to coshx, which does satisfy (3). Also Q and Qt both 
do annihilate (,,,”, J. However cosh x is not normalisable, and so has to be discarded. 
Moreover, this is necessary only for K +CO, so that A changes discontinuously from 
0 to 1 in this limit. 

4. Conclusions 

We have presented here a class of supersymmetric quantum mechanical models which 
are soluble both on the line and on the circle. It is a standard regularisation procedure 
to use fields defined on a circle subject to periodic boundary conditions, and then to 
pass to the infinite radius limit for the circle. The actual potentials used here arise in 
the quantum theory of solitons in two-dimensional spacetime, and the regularisation 
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procedure correctly reproduces (Braden 1984) the phase shifts and so on that are used 
in the computation of quantum corrections to masses (Dashen et a1 1974). 

Our supersymmetric e:xample shows that A = 0 for all finite radii, with supersym- 
metry unbroken, yet A = 1 in the infinite radius limit with supersymmetry still unbroken. 
Such a situation can be understood on quite general grounds. As the forms of H used 
in § 2 indicate, we are interested in calculating the index of the operator A. Now the 
index of any elliptic operator on an odd-dimensional compact manifold vanishes, i.e. 
A = 0. Furthermore for an odd-dimensional non-compact manifold, an index can be 
defined (Callais 1978) on the basis of suitable assumptions and the definition applied 
to the real line gives A = 1. 

Finally, we note that the possibility of discontinuous change in the Witten index 
has been mentioned previously (Davis er al 1983a) in connection with supersymmetric 
QCD. In this theory, for finite quark mass mq, there are N vacua invariant under 
supersymmetry, where N is the number of colours, but it is argued that these vacua 
disappear from the theory as mq + 0. 
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